• Bistritzer, R. & MacDonald, AH Twisted double-layer graphene moire strips. proc. Natl Acad. Science. United States 10812233–12237 (2011).

    ADS CAS Article Google Scholar

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 55643–50 (2018).

    ADS CAS Article Google Scholar

  • Cao, Y. et al. Correlated behavior of half-filled insulator in magic-angle graphene superlattices. Nature 55680–84 (2018).

    ADS CAS Article Google Scholar

  • Vergniory, MG et al. A comprehensive catalog of high quality topological materials. Nature 566480–485 (2019).

    ADS CAS Article Google Scholar

  • Vergniory, MG et al. All topological bands of all stoichiometric materials. Preprint at https://arxiv.org/abs/2105.09954 (2021).

  • Călugăru, D. et al. General construction and topological classification of plane crystalline bands. Nat. Phys. 18185-189 (2022).

    Google Scholar article

  • Kumar, P., Peotta, S., Takasu, Y., Takahashi, Y. & Törmä, P. Non-liquid Fermi behavior induced by flat-band multicomponent fermions. Phys. Rev. AT 103L031301 (2021).

    ADS CAS Article Google Scholar

  • Tsui, DC, Stormer, HL & Gossard, AC Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys. Rev. Lett. 481559-1562 (1982).

    ADS CAS Article Google Scholar

  • Laughlin, RB Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 501395–1398 (1983).

    Article on Google Scholar Ads

  • Moore, G. & Read, N. Nonabelions in the Fractional Quantum Hall Effect. Nucl. Phys. B 360362–396 (1991).

    ADS MathSciNet Google Scholar Article

  • Drozdov, A., Eremets, M., Troyan, I., Ksenofontov, V. & Shylin, SI Conventional superconductivity at 203 kelvin at high pressure in the sulfur hydride system. Nature 52573–76 (2015).

    ADS CAS Article Google Scholar

  • Drozdov, A. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569528-531 (2019).

    ADS CAS Article Google Scholar

  • Tang, E., Mei, J.-W. & Wen, X.-G. Fractional quantum Hall states at high temperature. Phys. Rev. Lett. 106236802 (2011).

    Article on Google Scholar Ads

  • Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106236804 (2011).

    Article on Google Scholar Ads

  • Sheng, D., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Common. 2389 (2011).

    ADS CAS Article Google Scholar

  • Regnault, N. & Bernevig, BA Chern fractional isolator. Phys. Rev. X 1021014 (2011).

    Google Scholar

  • Balents, L., Dean, CR, Efetov, DK & Young, AF Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16725–733 (2020).

    CAS Google Scholar Article

  • Peri, V., Song, Z.-D., Bernevig, BA & Huber, SD Fragile topology and flat-band superconductivity in the strong coupling regime. Phys. Rev. Lett. 126027002 (2021).

    ADS CAS Article Google Scholar

  • Rhim, J.-W., Kim, K. & Yang, B.-J. Quantum distance and anomalous Landau levels of flat bands. Nature 58459–63 (2020).

    ADS CAS Article Google Scholar

  • Xie, F., Song, Z., Lian, B. & Bernevig, BA Topology-related superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 124167002 (2020).

    ADS CAS Article Google Scholar

  • Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Common. 68944 (2015).

    ADS CAS Article Google Scholar

  • Bradlyn, B. et al. Topological quantum chemistry. Nature 547298-305 (2017).

    ADS CAS Article Google Scholar

  • Y. Xu et al. Atomic insulators clogged by filling. Preprint at https://arxiv.org/abs/2106.10276 (2021).

  • Mielke, A. Exact Ground States for Hubbard’s Model on the Kagome Lattice. J.Phys. A 254335–4345 (1992).

    ADS MathSciNet Google Scholar Article

  • Tasaki, H. From Nagaoka Ferromagnetism to Flat Band Ferromagnetism and Beyond: An Introduction to Ferromagnetism in the Hubbard Model. Program. Theor. Phys. 99489-548 (1998).

    ADS CAS Article Google Scholar

  • Bergman, DL, Wu, C. & Balents, L. Touching tape from real-space topology in frustrated jump patterns. Phys. Rev. B 78125104 (2008).

    Article on Google Scholar Ads

  • Liu, Z., Liu, F. & Wu, Y.-S. Exotic electronic states in the world of flat strips: from theory to hardware. Chin. Phys. B 23077308 (2014).

    Article on Google Scholar Ads

  • Ma, D.-S. et al. Spin-orbit induced topological flat bands in linear and split graphs of bipartite lattices. Phys. Rev. Lett. 125266403 (2020).

    ADS CAS Article Google Scholar

  • Chiu, CS, Ma, D.-S., Song, Z.-D., Bernevig, BA & Houck, AA Fragile topology in line graph networks with two, three or four spaced flat bands. Phys. Rev. Res. 2043414 (2020).

    CAS Google Scholar Article

  • Inorganic Crystal Structure Database (ICSD) (Fachinformationentrum Karlsruhe, 2015); https://icsd.products.fiz-karlsruhe.de/.

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Tower. 136B864–B871 (1964).

    ADS MathSciNet Google Scholar Article

  • Kohn, W. & Sham, LJ Self-consistent equations including trade and correlation effects. Phys. Tower. 140A1133–A1138 (1965).

    ADS MathSciNet Google Scholar Article

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shelled transition metals. Phys. Rev. B 4813115–13118 (1993).

    ADS CAS Article Google Scholar

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a basic set of plane waves. Calculation. Mater. Science. 615–50 (1996).

    CAS Google Scholar Article

  • Ivanchev, S., Kroumova, E., Madariaga, G., Pérez-Mato, JM & Aroyo, MI SUBGROUPGRAPH: a computer program for the analysis of group-subgroup relationships between spatial groups. J.Appl. Crystallologist. 331190–1191 (2000).

    CAS Google Scholar Article

  • Ivanchev, S. et al. SUPERGROUPS—a computer program for determining supergroups of space groups. J.Appl. Crystallologist. 35511-512 (2002).

    CAS Google Scholar Article

  • Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65035109 (2001).

    Article on Google Scholar Ads